
Correlation coefficients, temperature and distance separation. A dissection.   

by Geoffrey Sherrington. 

Lagged data strings. 

An early step in the application of geostatistical mathematics to a data string is commonly the 

construction of a semivariogram. From Wikipedia, this and following material are descriptive. 

http://en.wikipedia.org/wiki/Semivariogram 

Quote: In spatial statistics the theoretical variogram 2γ(x,y) is a function describing the degree of 
spatial dependence of a spatial random field or stochastic process Z(x). It is defined as the variance 
of the difference between field values at two locations across realizations of the field (Cressie 1993): 

 

If the spatial random field has constant mean μ, this is equivalent to the expectation for the 
squared increment of the values between locations x and y (Wackernagel 2003): 

 

where γ(x,y) itself is called the semivariogram. In case of a stationary process the variogram 
and semivariogram can be represented as a function γs(h) = γ(0,0 + h) of the difference h = y 
− x between locations only, by the following relation (Cressie 1993): 

γ(x,y) = γs(y − x).   (End quote) 

The semivariogram introduces the method of comparing data strings by looking at differences when 
the strings are shifted 1, 2, 3, … n points apart. In a familiar example, a set of chemical analyses of 
1000 mm cuts, from adjacent intervals from a drill hole, would be expected to correlate best when 
adjacent cuts are chosen. If the correlation is made between intervals 10 cuts apart, a worse 
correlation is expected intuitively. The method is an approach to determining the separation at 
which a value at one place has some predictive power in estimating another value distant from it. 

In the following essay, the formal mineral semivariogram mathematics are not used. They involve 
other properties such as stationarity, nugget effects, variations in host lithologies etc., to be 
considered. However, related methods of lagging data strings by 1, 2, 3, … n intervals can be used in 
conjunction with classical correlation coefficients, here calculated by the standard Excel command 
“CORREL”. 

The problem of R in climate temperature strings. 

http://en.wikipedia.org/wiki/Semivariogram
http://en.wikipedia.org/wiki/Spatial_statistics
http://en.wikipedia.org/wiki/Random_field
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Stationary_process


With the unpredictable nature of weather, how do we arrive at correlation coefficients higher 
than 0.9? That is the fundamental question for this essay.  

We shall tease apart data starting from annual temperatures, then to monthly, then to daily. We 
shall use one weather station mainly, because there is zero separation of distance and so we start 
with a best case. The record for Melbourne Australia suits. It extends at one site from 1854. We are 
not concerned with effects like UHI at this site for the methods used. Latitude and longitude are 
37.8075S, 144.9700E, Australian Bureau of Meteorology Number is  106071, World Meteorological 
Number is 94868, altitude is 31m. 

The variation of correlation coefficient with distance separation is integral to the study released in 
preliminary form by Rohde et al as part of the Berkeley University BEST project to examine UHI on a 
global scale. One can see that R>0.9 at some close separations, but in extreme cases R>0.8 at 
separations of 1000 to 1500 km. How can this be? It is atypical of much Earth Science data. The 
following figure with caption is from the BEST report of October 2011. 

 

 

A related figure is in Della-Marta,Paul, Collins, Dean and Braganza, Karl. Aust. Met. Mag. 53 (2004) 

75-93. 



 

 

Methodology. 

The temperature record for Melbourne has occasional missing values. These were infilled 

unscientifically by an approximate mean of those around them. There are too few corrections to 

affect the conclusions here. T mean was calculated as half of (Tmax+Tmin). 

Stage 1. Melbourne annually for 150 years. 

The approximately 150 years of annual averaged temperature data were analysed on Excel by 

lagging. That is, the correlation coefficient between the 150 values, and the same values moved 

down one year, was calculated. This was repeated with a 2 year lag, and so on up to 12 years. A year 

of data drops off the end at each shift so that finally about 137 pairs were correlated. A graph 

summarising the results is shown. 

 



 

 

The interpretation is simplified by the choice of one site. The lag 1 results show how temperatures 

correlate with a time separation of 1 year. There are three obvious features. First, the best value of R 

is about 0.85, well below many of the correlation shown on the figures above for separated sites. 

Second, the Tmax correlations are greatly worse than the Tmin for reasons unknown. Therefore, a 

derivation of Tmean from them has a component of unknown origin. It is Tmean that is plotted on 

the BEST separation graph referenced. Third, as expected, the correlations worsen as the lags 

increase, showing that values well separated in time have reduced ability to predict earlier values. 

These annual data were calculated from the arithmetic averages of daily data. 

 

Stage 2. Melbourne, month of January for 150 years. 

January, as a month, was selected for no particular reason for the next exercise, which can be 

repeated for any month. The results will be essentially similar. 
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Years of lag. 

Melbourne. Correlation Coefficients for 150 years of annual 
averaged temperatures lagged by 1, 2, 3 .. 12 years. Blue is 

Tmean, olive is Tmin, tan is Tmax. 



 

 

Interpretation. The monthly result (here for January) is somewhat similar to annual result except 

that correlations are lower. There is little ability to estimate temperature in year Y+1 from year Y, by 

using monthly data. The peak at lag 8 years arises from unknown causes. It mildly infers an 8 year 

cycle in this month in this place, but it is contrary that there is no sign of an 11 year cycle that some 

might expect to see. 

A second part of a monthly analysis is to simply compute correlation coefficients between adjacent 

months. For the full 150 years, here are the correlation coefficients for Jan-Feb, Feb-Mar, Mar-Apr  

etc in turn, first Tmax then Tmin. 

JF FM MA AM MJ JJ JA AS SO ON ND    1856-2005. 

0.221    0.260 0.020 0.289 0.328 0.418 0.187 0.293 0.202 0.252 0.220  

0.561 0.587 0.501 0.423 0.313 0.367 0.353 0.537 0.503 0.527 0.572 

Thus, temperatures in one month do not correlate highly with the adjacent month. Tmax again gives 

systematically poorer correlations than Tmin. All are well below “significant” correlation in a loose 

use of that word. These monthly data were calculated from the averages of daily data. 
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Lag in years. 

Melbourne. January temperatures for 150 years lagged 
by 1, 2, 3 .. 12 years and correlated. Tan is Tmin, blue is 

Tmax. 



Stage 3. Melbourne, Daily Data for 150 days. 

To reduce file sizes, only a few daily pairs were calculated. That is, I examined the correlation 

coefficient between pairs of days that followed each other (lag 1 day only). Because we have been 

using a series about 150 values in length, I selected a few strings about 150 days long. I repeated this 

procedure at several dates so we can see the variations. The chosen 150 day terms are all in the 

1960-80 period because instrumental changes away from glass thermometers commenced in the 

late 1980s in Australia; and because the Australian temperature change was not so severe in the 

1960-80 period. (I am trying to minimise spurious effects and to maximise the chance of hitting a 

high R). 

Four of these exercises gave  

Tmax (R)                    Tmin (R) 

0.767                      0.706     Started 10 Feb 1962 

0.545                      0.398     Started 5 Nov 1964  

0.653                      0.604     Started 5 Aug 1970 

0.411                      0.430     Started 1 Dec 1976 

  

There are too few of these exercises here to find R>0.85, so the conclusion is that even adjacent 

days, taken over a 150 day term, correlate poorly but probably positively near to 0.5 on average. 

Nothing done here so far points to R>0.85, the goal. Remember, all treatments so far are from the 

same location, Melbourne. The effect of distance separation cannot be expected to improve this 

situation. 

The next logical steps are to examine (a. shorter data strings, below 150 values; and (b. sites other 

than Melbourne. 

 

Stage 4. Shorter data strings. 

The caption from the BEST diagram above mentions that their comparisons were done on years, 

where each string was more than 10 years long. Therefore, I took the Mebourne data later than year 

1900 (to try for better quality, avoid Stevenson screen date complications, etc.) and calculated 10 

strings each of 10 years, using the one year lag method only. That is, for 10 periods of a decade each, 

I looked at the correlation coefficients between one year and the next - using averaged annual data, 

not daily sampling. 

 

 

 



Decade Tmax Tmin 

starting R R 

1907 0.561497 -0.10998 

1917 0.099624 0.034864 

1927 -0.39736 0.30504 

1937 0.065989 0.03306 

1947 -0.22819 0.19784 

1957 -0.07647 0.268644 

1967 -0.00553 0.435924 

1977 0.432846 -0.14064 

1987 0.050154 0.032175 

1997 -0.11212 0.117196  

   

The conclusion is that in a single location (Melbourne), the correlation coefficients between 

temperature data from adjacent years, within a decade, have no systematic pattern. 

I have shown at the beginning  of this essay that the same data taken over a full 150 years does have 

some systematics. The question therefore arises as to the valid length of data required to produce 

credible correlations in adjacent years. Therefore, 144 consecutive years of data ending in 2005 

were split into halves, then quarters, with this result. 

TERM 144 yrs 
1st 72 
yrs 

2nd 72 
yrs 

1st 36 
yrs 

2nd 36 
yrs 

3rd 36 
yrs 

4th 36 
yrs 

Tmax,R 0.4470 0.5771 0.3276 0.5822 0.6148 -0.0267 0.5166 

Tmin, R 0.8371 0.4707 0.8545 0.3612 0.1630 0.4994 0.4459 
 
        

The elusive R>0.85 appears in the second half of the Melbourne data in Tmin.  

However, one asks how this happens, because the other intervals selected in that year appear to 

show no pattern. While R for Tmin is highest in this table in the period 1932 to 2005, this is the 

lowest (bar 1 ) period for Tmax. Systematic patterns are hard to find in all of the essay to date. 

The question arises whether a correlation coefficient of this type returns the same answer from 

annually averaged inputs, as from daily inputs over the same term. Of course, it would not be the 

same answer because one set is lagged by a year and the other by a day. 

Using the table above and selecting 4th 36 years (1968-2005),  

Tmax using yearly averaged and annual lag   0.5166 

Tmin using yearly averaged and annual lag   0.4459 

T max using daily data and lagged by one year   0.5121 

T max using daily data and lagged by one year 0.5464 

T max using daily data and lagged by one day  0.7310 

T min using daily data and lagged by one day   0.7706 

……………………….. 



It is an obvious conclusion that the choice of sampling interval, be it daily, weekly, monthly or 

annual, has a dramatic effect of the calculations. Probably, it also follows logically that smoothing 

will have an effect; and that other mathematical manipulations such as detrending of cyclic data 

and infilling of missing data should be treated with tests of the types shown above. 

Note also that in most instances, the correlation coefficient on Tmin is better than that on Tmax. 

There are probably physical reasons for this, but it would be idle to speculate when experiments can 

be performed. Another cautionary note is that the method of calculation of Tmean has changed over 

the years. In liquid-in-glass thermometer days, it was commonly Tmean = (Tmax+Tmin)/2. Since the 

early 1990s, many systems have been samples many times a day, allowing spike rejection and 

smoothing of select Tmax and Tmin from a curve. Given that spikes are probably more prevalent in 

day time than night time, spike rejection could be one reason for the discrepancy between Tmax and 

Tmin correlations. 

Data strings that have been subjected to homogenisation, TOBS, Filnet and other manipulations 

should be used with extreme care. 

There is a strong case to argue that the cluster of extreme values of high correlation with short 

distance separation, as on the graphs shown above, is simply an artifice. That is, when a correlation 

coefficient is calculated, some mathematical result is obtained and there are occasional chance 

times when a high result is obtained, even though it has little to nothing to do with the systematics 

of climate.  

The results above also call for caution when investigating distance correlations at different latitudes. 

Since Tmax and Tmin seldom agree well in these examples above, at latitude 38 deg S, one wonders 

at the effect of polar days and nights that last half a year. The could be expected to be different to 

places near the Equator. 

It is hard to argue that sampling at one location and comparing data as short as a day apart, should 

logically give lower correlation coefficients than two places separated by 1,000 km. 

Yet, this result has been obtained here. Until it is explained, the data should not be used, especially 

for corrective or predictive purposes. 

 

Recommendation. 

The simple calculations shown above should be replicated many times so that an expected 

distribution of results for each small variation of technique is obtained. Remember that this example 

has dealt only with the city of Melbourne, which might have some atypical characteristics. 

__________________________________________________________________________________ 

 


